Capítulo 1.   Introducción.
  • Brugge JF. Neurofisiología de los aparatos auditivo y vestibular centrales. En: Otología.Vol.1. Paparella MM, Shumrick DA. Ed Med Panamericana. Madrid. ISBN 84-85320-64-6. 1987.Durrant J, Lovrinic J: Bases of Hearing Science. 3rd Edition, 1995.
  • Gil-Loyzaga P; Pujol R: Fisiología de la Audición. En: Fisiología Humana. J. A. F. Tresguerres. Edit. McGraw Hill-Interamericana 1992;18:294-314.
  • Gil-Loyzaga P. (Editor). Actualización en ORL “Fisiología y Fisiopatología de la Cóclea” SANED Ediciones. 2005.
  • Keidel W, Kallert S, Korth M. The Physiological Basis of Hearing. Ed Thieme-Stratton Inc. N.Y. USA. ISBN 0-86577-072-7. 1983.
  • Mercier J. Traité d´acoustique. P.U.F. Paris, 1962.Møller AR [ed]: Basic Mechanisms in Hearing. New York, Academic Press, 1973.
  • Poch Broto J; Gil-Loyzaga P: Fisiología Cóclear. En: Hipoacusia Neurosensorial. Editor: Dr.Vallejo Valdezate. Editorial Masson S.A., Madrid; 2003: 1-10.
  • Uziel A. El sistema auditivo central. En: Fisiología Neurosensorial en ORL. Guerrier Y, Uziel A. Ed Masson S.A. Barcelona. ISBN 84-311-0368-X. 1985.
 
   Capítulo 2.   Fisiología del oído externo.
  • Gonzalez M, Machimbarrena M. Fisiología del oído externo. En “El oído externo”. Gil-Carcedo LM, Vallejo LA. Eds. Ed. Ergon 2001.
  • López-Poveda EA, Meddis R. A physical model of sound diffraction and reflections in thehuman concaha. J Acoust Soc Am 1996;100(5):3248-3259.
 
   Capítulo 3.   Fisiología del oído medio.
  • Borg E, Counter SA. The middle-ear muscles. Sci Am. 1989;261(2):74-80.Dallos P: The Auditory Periphery: Biophysics and Physiology. New York, Academic Press, 1973.
  • Decraemer WF, Dirckx JJ, Funnell RJ. Shape and derived geometrical parameters of the adult human tympanic membrane measured with a phase-shift moiré interferometer. Hearing Res. 1991;51:107-122.
  • Goll E, Dalhoff E. Modeling the eardrum as a string with distributed force. J Acoust Soc Am. 2011;130(3):1452-62.
  • Goode RL, Killion M, Nakamura K, Nishihara S. New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol. 1994; 15: 145-154.
  • Nishihara S, Aritomo H, Goode RL. Effect of changes in mass on middle ear function. Otolaryngol Head Neck Surg. 1993;109(5):899-910.
  • Tonndorf J, Khanna SM. The role of the tympanic membrane in middle ear transmission. Ann Otol Rhinol Laryngol. 1970;79(4):743-53.
  • Uriel A. El oído externo y el oído medio. En: Fisiología Neurosensorial en ORL. Guerrier Y, Uziel A. Ed. Masson S.A. Barcelona. ISBN 84-311-0368-X. 1985.
  • Wada H, Metoki T. Analysis of a dynamic behaviour of human middle ear using a finite element method. J Acoust Soc Am. 1992, 96: 3157-3168.
 
   Capítulo 4.   Mecánica coclear.
  • Ashmore JF. A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol. 1987;388: 323-347.
  • Bekesy Von G. Experiments in hearing. Mc Graw Hill, New York. 1960.Bekesy Von G, Rosenblith WA. The mechanical properties of the ear. Handbook of experimental psychology. John Willy and S. Inc. New Yorki 1951;1075-1115.
  • Bekesy Von G: Experiments in Hearing. Huntington, NY, Kreiger, Carrat R, Durivault J. Cochlée et bruit blanc: approaches experimentales. XIIª Assies Prothèse auditive. Tours 1974.
  • Békésy, Georg V. The Variation of Phase Along the Basilar Membrane with Sinusoidal Vibrations. The Journal of the Acoustical Society of America, 1947, 19: 452–60. 
  • Békésy, Georg von, and Ernest Glen Wever. Experiments in Hearing. New York: McGraw-Hill, 1960.
  • Dallos P, Popper A, Fay R (ed.): The Cochlea. 1996.Helle R. Enlarge hydromechanical cochlea  model with basilar membrana and tevctorial membrana. In. Facts and models in hearing. Springer-Verlag. Berlin 1974, pp 77-85.
  • Johnstone BB, Boyle AJF, Basilar membrane vibration examined with the Mössbauer technique. Science  1967;158:389-390.
  • Rhode WS. Observation of the variation of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Amer 1971;49(4):1218-1231.
  • Ronndorf J. Dimensiona analysis of cochlear models. J Acoust SWoc Amer 1960;32,4: 493-497.
  • Sellick PM, Patuzzi R, Johnstone BM.  Measurement of basilar membrane motion in the guinea pig using the Mösbauer technique. J Acoust Soc Am. 1982;72: 131-141.
  • Shera CA, Zweig G. Middle-ear phenomenology: the view from the three windows. J. Acoust. Soc. Am, 1992;92 (3):1356-1370.
  • Spoendlin H: The Organization of the Cochlear Receptor. Basel, S. Karger, 1966.Tonndorf J. Fluid motion in cochlear models. J Acoust Soc f Amer 1957;29,5: 558-568.
  • Wever EG, Lawrence M: Sound conduction in the cochlea. Ann Otol Rhinol Laryngol 1952;61: 824-835.
  • Wilson JP. A sub-miniature capacitive probe for vibration measurements of the basilar membrana. J Sound Vibration 1973;30,4:483-493.
  • Zwicker E. A second filter established within the scala media . In: Facts and Models in hearing. Springer-Velag. Berlin 1974:95-99.
  • Zwislocki JI. Chochear waves: interaction betwen theory and experiments. J Acoust Soc Amer 1974;55(5):578-583.
 
   Capítulo 5.   Electrofisiología del oído interno.
  • Ashmore, JF, Meech, RW. Ionic basis of the resting potential in outer hair cells isolated from the guinea pig cochlea. Nature 1986; 322: 368-371.
  • Ashmore JF. Mammalian hearing and the cellular mechanisms of the cochlear amplifier. En: Sensory Transduction. Corey DP, Roper SD. (Eds) New York, Rockefeller University Press. pp. 396-412. 1992.
  • Engstrom H, Ades HW, Hawkins JE II: Structure and functions of the sensory hairs of the inner ear. J Acoust Soc Amer 1962; 34:1356-1363.
  • Hudspeth AJ: Sensory transduction in the ear. In Kandel ER, Schwartz JH, Jessell TM (ed.): Principles of Neural Science. 4th Edition. New York: McGraw-Hill, 2000, pp. 614-624.
  • Merzenich M. Intra-choclear elecvtrical stimulacion with a bipolar electrode in animals and man. IN: Electrical stimulation of the acoustic nerve in man. Velo-Bind. Inc. San Francisco 1974:79-92.
  • Nobili R, Mammano F, Ashmore J. How well do we understand the cochlea? Trends Neurosci.1998;159-167.
  • Spoendlin H. The Organization of the Cochlear Receptor. Basel, S. Karger, 1966.Tonndor J. Response of cochear  models to periodic signals and to random noises. J.A.S.A. 1960;32(10):1344-1355.
  • Velluti RA, Pedemonte M, García-Austt E. Correlative changes of auditory nerve and microphonic potentials throughout sleep. Hear Res. 1989;39: 203-208.
 
    Capítulo 6.   Fisiología de las células ciliadas.
  • Ashmore JF, Meech RW. Ionic basis of the resting potential in outer hair cells isolated from the guinea pig cochlea. Nature 1986;322: 368-371.
  • Ashmore JF. A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol. 1987;388: 323-347.
  • Assad JA, Corey DP. An active motor mediates adaptation by vertebrates hair cells. J Neurosci. 1992;12: 3291-3309.
  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear hair cells. Science 1985;227: 194-196.
  • Corey DP, Hudspeth AJ. Ionic basis of the receptor potential in a vertebrate hair cell. Nature 1979;281: 675-677.
  • Dallos P. Response characteristics of mammalian cochlear hair cells. J Neurosci. 1985;5: 1591-1608.
  • Davis H. A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol. 1965;81-190.
  • Dijk P, Narins PM, Wang J. Spontaneous otoacoustic emissions in seven frog species. Hear Res. 1996;101: 102-112.
  • Dulon D, Aran JM, Schacht J. Potassium-depolarization induces motility in isolated outer hair cells by an osmotic mechanism. Hear Res. 1998;23-130.
  • Geleoc GS, Holt JR. Auditory amplification: outer hair cell press the issue. Trends Neurosci. 2003; 26: 115-117.
  • Gulick WL, Gescheider GA, Frisina RD. Transduction and cochlear mechanism. En:Hearing: Physiological Acoustic, Neural Coding, and Psychoacoustics. Ed. Oxford University Press. Oxford. 1989.
  • Hackney CM, Furness DN, Benos DJ. Localization of putative mechanoelectrical transducer channels in cochlear hair cells by immunoelectron microscopy. Scan Microscop. 1991; 5:741-746.
  • Holley MC. Outer hair cell motility. En: The Cochlea.P. Dallos, Popper, A.N., R.R. Fay (Eds). Springer. pp. 386- 434. 1996.
  • Hudspeth AJ, Corey DP. Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci. 1977;7.
  • Hudspeth AJ. Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci. 1982;2: 1-10.
  • Iwasa KH, Chadwick RS. Elasticity and active force generation of cochlear outer hair cells. J Acoust Soc Am. 1992;169-3173.
  • Jaramillo F, Hudspeth AJ. Localization of the hair cell´s transduction channels at the hair bundle´s top by iontophoretic applicationof a channel blocker. Neuron 1990;7: 409-420.
  • Kachar B, Brownell WE, Altschuler R, Fex J. Electrokinetic shape changes of cochlear outer hai cells. Nature 1986;322:365-368.
  • Kros CJ. Physiology of mammalian cochlear hair cells. En: The Cochlea. P. Dallos, A..N. Popper and R.R. Fay (Eds). Springer. pp. 318- 385. 1996.
  • Kros, CJ, Crawford AC. Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol. (Lond) 1990;421: 263.
  • Nielsen DW, Slepecky N. Stereocilia. En: Neurobiology of hearing: The cochlea. Altschuler RA, Hoffman DW, Bobbin R.P. (Eds) New York. Raven Press. pp. 23-46. 1986.
  • Russell IJ, Sellick PM. Tuning properties of cochlear hair cells. Nature 1977;267: 858-860.
  • Russell IJ, Richardson GP, Cody AR. Mechanosensitivity of mammalian auditory hair cells in vitro. Nature 1986;321: 517-519.
  • Ryan A, Dallos P. Effect of absence of cochlear outer hair cells on behavioral auditory threshold. Nature 1975;253:44-46.
  • Santos-Sacchi J. Dye coupling in the organ of Corti. Cell Tiss Res. 1986;245:525-529.
  • Santos-Sacchi J, Dilger JP. Whole cell currents and mechanical responses of outer hair cells. Hear Res 1988;35: 143-150.
  • Wangemann P, Schacht J. Homeostatic mechanisms in the cochlea. En: The Cochlea. P. Dallos, A..N. Popper, R.R. Fay (Eds). Springer. pp. 130-185. 1996.
  • Wangemann P. K+ cicling and the endocochlear potential. Hear Res. 2002; 165: 1-9.
  • Zenner HP, Zimmermann U, Schmitt U. Reversible contraction of isolated mammalian cochlear hair cells. Hear Res. 1985; 18: 127-133.
  • Zwislocki JJ, Slepecky NB, Cefaratti LK, Smith RL. Ionic coupling among cells in the organ of Corti. Hear Res. 1992;57:175-194.
 
   Capítulo 7.   Bioquímica del oído interno.
  • Brechtelsbauer PB, Prazma J, Garrett CG, Carrasco VN, Pillsbury HC. Catecholaminergic innervation of the inner ear. Otolaryngol Head Neck Surg. 1990;103: 566-574.
  • Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev. 1993;09:373.
  • Fex J, Altschuler RA. Neurotransmitter-related immunocytochemistry of the organ of Corti. Hear Res. 1986;49:263.
  • Frolenkov GI, Mammano F, Kachar B. Regulation of outer hair cell cytoskeletal stiffness by intracelullar Ca2+ : underlying mechanism and implications for cochlear mechanics. Cell Calcium 2003; 33: 185-95.
  • Garattini S. Glutamic Acid, Twenty years later. J Nutr. 2000;130: 901S-909S.Lewis RS, Hudspeth AJ. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 1983;304:538-541.
  • Lovinger DM. NMDA receptors lose their inhibitions. Nature Neuroscience. 2002;5(7): 614-616.
  • Meldrum BS. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr. 2000;130:1007S-1015S.
  • Sobkowicz HM, Slapnick SM, August BK. Presynaptic fibers of spiral neurons and reciprocal synapses in the organ of Corti in culture. J Neurocytol. 1993;22: 979-993.
  • Spoendlin H, Lichtensteiger W. The adrenergic innervation of the labyrinth. Acta Otolaryngol. 1996;23:434.
 
   Capítulo 8.   Fisiología de las vías auditivas.
  • Benedix JH Jr., Pedemonte M, Velluti RA, Narins PM. Temperature dependence of two-tone suppression in the auditory nerve of the frog. J Acoust Soc Am. 1994;96:2738-2745.
  • Binder JR, et al. Functional magnetic resonance imaging of human auditory cortex. Ann. Neurol.35, 662–672.
  • Dallos P, Harris D. Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol. 1978;65-383.
  • Gil-Loyzaga P. Estudios de Lorente de No sobre los núcleos cocleares. Madrid Médico Supl. 1991;2:17-20.
  • Puel JL, Ruel J, Pujol R. The inner hair cell afferent/efferent synapses revisited: a basis for new therapeutic strategies. Adv Otorhinolaryngol 2002;59:124-30.
  • Rasmussen G. Further observations of the efferent cochlear bundle. J Comp Neurol. 1953;99: 61-74.
  • Rosenbluth J. The fine structure of the acoustic ganglion in the rat. J Cell Biol. 1962; 329-359.
  • Sachs MB: Stimulus-response relation for auditory nerve fibers: two-tone stimuli. J Acoust Soc Amer 1969;45:1025-1036.
  • Sweet RA, Dorph-Petersen K-A, Lewis DA. Mapping auditory core, l ateral belt, and parabelt cortices in the human uperior temporal gyrus. J Comp Neurol. 2005; 491:270-289.
  • Talavage TM, Ledden PJ, Benson RR, Rosen BR, Melcher JR. Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear Res. 2000;150:225-244.
  • Thompson GC, Cortez AM, Igarashi M. GABA-like immunoreactivity in the squirrel organ of Corti. Brain Res. 1986;372: 72-79.
  • Warr WB, Beck Boche J, Nelly ST. Efferent innervation of the inner hair cell region. Origins and terminations of two lateral olivocochlear system. Hear Res. 1997;108: 89-111.
  • Warr WB, Beck Boche J, Nelly ST. Efferent innervation of the inner hair cell region. Origins and terminations of two lateral olivocochlear system. Hear Res. 1997; 108: 89-111.
  • Webster WR, Atkin LM: Central auditory processing. In Gazzaniga MS, Blakemore C [ed]: Handbook of Psychobiology. New York, Academic Press, 1975.
  • Wiederhold ML: Variation in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve fiber responses to tone bursts. J Acoust Soc Amer 1970;48:966-977.
  • Yetkin FZ, Roland PS, Christensen WF, Purdy PD. Silent functional magnetic resonance imaging (FMRI) of tonotopicity and stimulus intensity coding in human primary auditory cortex. Laryngoscope. 2004;114:512--518.